Year 12 Mathematics Methods



PERTH MODERN SCHOOL

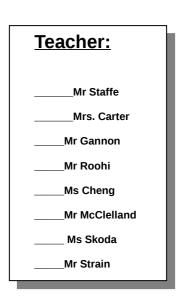
Exceptional schooling. Exceptional students.

Test 1 Differentiaton , applications and Optimisation. Basic antidifferentiation Semester One 2017 Year 12 Mathematics Methods Calculator Free

Name: **SOLUTIONS** 

Date Monday 20<sup>th</sup> February 7.45am

You may have a formula sheet for this section of the test.



(4 marks)

#### **Question 1**

Find y in terms of x given that  $\frac{dy}{dx} = 15x(5x^2 - 1)^2$ and y = 40 when x = 1



This study Berth Modern School 000846012161 from CourseHero.com on 07-10-2022 12:06:51 GMT -05:00

### **Question 2**

#### (6 marks)

Clearly showing your use of the product, quotient or chain rule differentiate the following. (YOU MAY LEAVE YOUR ANSWERS IN AN UNSIMPLIFIED FORM).

a) 
$$y = (\sqrt{x}+1)(x^2-1)$$
 (2)  

$$\frac{dy}{dx} = \frac{(x^2-1)}{2\sqrt{x}} + 2x(\sqrt{x}+1)$$
b)  $y = \frac{1-t}{1-2t^2}$  (2)  

$$\frac{dy}{dt} = \frac{-(1-2t^2)+4t(1-t)}{(1-2t^2)^2}$$
c)  $y = (3x^2+5)^3$ 
(2)  

$$\frac{dy}{dx} = 18x(3x^2+5)^2$$

This study Rerth Modern School 000846012161 from CourseHero.com on 07-10-2022 12:06:51 GMT -05:00

# **Question 3**

Given that 
$$y = x^{\frac{1}{3}}$$
, use  $x = 1000$  and the increments formula  $\delta y \approx \frac{dy}{dx} \delta x$  to determine an approximate value for  $\sqrt[3]{1006}$ .

 Solution

  $\frac{dy}{dx} = \frac{1}{3}x^{-\frac{2}{3}}$ 
 $\delta y \approx \frac{1}{3}x^{-\frac{2}{3}} \times 6$  

 When x = 1000,

  $\delta y \approx 2 \times \frac{1}{(\sqrt[3]{1000})^2}$ 
 $\approx \frac{2}{100}$ 
 $\therefore \sqrt[3]{1006} \approx 10.02$  

 Specific behaviours

  $\checkmark$  substitutes for x correctly

  $\checkmark$  determines  $\frac{dy}{dx}$ 
 $\checkmark$  uses  $\frac{\delta y}{\delta x}$  correctly

  $\checkmark$  determines approximate value

### **Question 4**

For the function  $y=x^4-4x^3+1$  determine

- a) The coordinates of the y- intercept y=(0,1)  $\checkmark$
- b) The behaviour of the function as  $x \to \pm \infty$

y increases as  $x \to \pm \infty$   $\checkmark$ 

c) The location and nature of any turning points  

$$\frac{dy}{dx} = 4x^{3}(x-3)$$
Gradient of 0 at  $x=0 \land x=3$   

$$\frac{dy^{2}}{d^{2}x} = 12x^{2}$$

$$\frac{dy^{2}}{d^{2}x}(0)=0 \therefore \text{ horizontal point of inflection}$$

$$\frac{dy^{2}}{d^{2}x}(3)>0 \therefore \text{ minimum turning point}$$

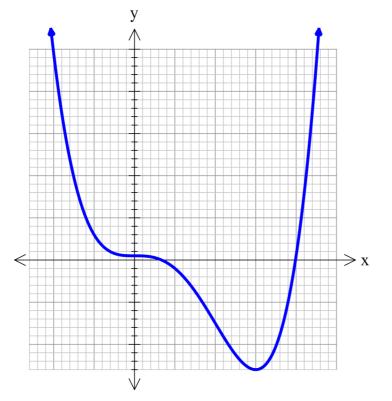
$$Minimum turning \text{ point at } (3,-26)$$

 $\checkmark$ 

https://www.coursehero.com/file/60006405/2017-MET3-4-TEST-1-Differentiation-and-applications-SOLUTIONSdocx/

# (6 marks)

d) Any points of inflection and what type of inflection they are. Horizontal point of inflection at(0,1)Hence sketch the curve on the axes provided. (Ensure you label all parts)





 $\sqrt{}$ 



PERTH MODERN SCHOOL

Exceptional schooling. Exceptional students.

Test 1 Differentiaton , applications and Optimisation. Basic antidifferentiation Semester One 2017 Year 12 Mathematics Methods Calculator Assumed

| Name: SOLUTIONS                                                                               | Teacher:                                             |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------|
| Date Monday 20 <sup>th</sup> February 7.45am                                                  | Mr Staffe                                            |
|                                                                                               | Mrs. Carter                                          |
| You may have                                                                                  | Mr Gannon                                            |
| • a formula sheet                                                                             | Mr Roohi                                             |
| This study Rerthw Modern School 000846012161 from CourseHero.com on 07-10-2022 12:00          | Page <b>4</b> of <b>9</b><br>5:51 GMT -05:00Ms Cheng |
| https://www.coursehero.com/file/60006405/2017-MET3-4-TEST-1-Differentiation-and-applications- | SOLUTIONSdocx/Mr McClelland                          |

- one page of A4 notes, one side
- a scientific calculator
- a classpad

### **Question 1**

(b)

### (7 marks)

A small object is moving in a straight line with acceleration  $a = 6t + k \text{ ms}^{-2}$ , where *t* is the time in seconds and *k* is a constant. When t = 1 the object was stationary and had a displacement of 4 metres relative to a fixed point *O* on the line. When t = 2 the object had a velocity of 1 ms<sup>-1</sup>.

(a) Determine the value of k and hence an equation for the velocity of the object at time t.

(4 marks)

| Solution                                                     |    |
|--------------------------------------------------------------|----|
| $v = 3t^2 + kt + c$                                          |    |
| t = 1, 3 + k + c = 0                                         |    |
| t = 2, 12 + 2k + c = 1                                       |    |
| k = -8                                                       |    |
| <i>c</i> =5                                                  |    |
| $v = 3t^2 - 8t + 5$                                          |    |
| Specific behaviours                                          |    |
| ✓ antidifferentiates acceleration, adding constant           |    |
| $\checkmark$ derives simultaneous equations from information |    |
| ✓ solves equations                                           | .r |
| ✓ writes velocity equation                                   |    |
| Solution                                                     |    |
| $s = t^3 - 4t^2 + 5t + c$                                    |    |
| t = 1, 4 = 1 - 4 + 5 + c                                     |    |
| <i>c</i> =2                                                  |    |
| $s = t^3 - 4t^2 + 5t + 2$                                    |    |
| s(2) = 8 - 16 + 10 + 2                                       |    |
| =4 m                                                         |    |
| Specific behaviours                                          |    |
| ✓ antidifferentiates velocity                                |    |
| $\checkmark$ determines constant                             |    |
| ✓ evaluates displacement                                     |    |

# Question 2 [7 marks]

An open cuboid container for holding fishing equipment, is made with a base length twice as long as its width is to be made from a sheet of metal with an area of 36 m<sup>2</sup>.

(a) Show that its height is given by the expression 
$$h = \frac{6}{x} - \frac{x}{3}$$
 where x is the width of

the base.

$$2x^{2} + 2xh + 4xh = 36$$
$$2x^{2} + 6xh = 36$$
$$6xh = 36 - 2x^{2}$$
$$h = \frac{36}{6x} - \frac{2x^{2}}{6x}$$
$$= \frac{6}{x} - \frac{x}{3}$$

(b) Express the volume V, in terms of x

$$V = lwh$$
  
= 2x.x.  $\left(\frac{6}{x} - \frac{x}{3}\right)$   
= 12x -  $\frac{2x^3}{3}$ 

(c) Find the maximum Volume using Calculus techniques.

$$\frac{dV}{dx} = 12 - 2x^{2}$$
Put  $\frac{dV}{dx} = 0$ 

$$12 - 2x^{2} = 0$$

$$x^{2} = 6$$

$$x = \pm\sqrt{6}$$
 Discard negative value  
Maximum volume is  $8\sqrt{6}$  19.60 to 2*d.p*

#### **Question 3**

#### (10 marks)

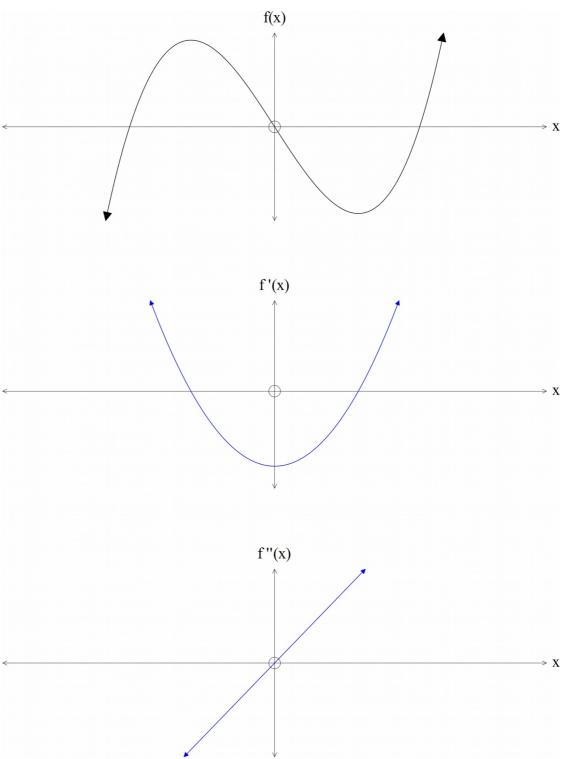
(a) Given the sketch of the function y = f(x) on the set of axes below, use it to sketch the functions y = f'(x) and y = f''(x). (3)

https://www.coursehero.com/file/60006405/2017-MET3-4-TEST-1-Differentiation-and-applications-SOLUTIONSdocx/

[3]

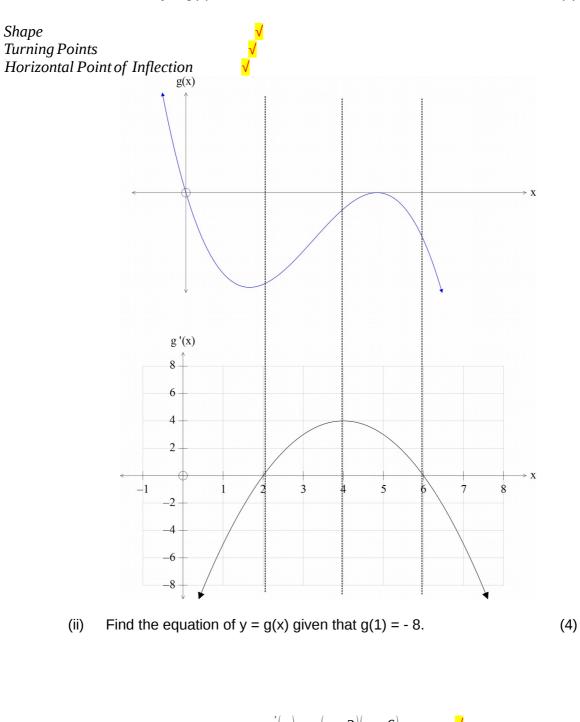
[2]

[2]



(b) (i) Given the graph of the function y = g'(x) sketch a possible graph of the function y = g(x). (3)

Test 1 2017



$$g'(x) = -(x-2)(x-6)$$

 $g'(x) = -x^2 + 8x - 12$ 

$$g(x) = \frac{-x^{3}}{3} + 4x^{2} - 12x + c \qquad \checkmark$$
$$-8 = \frac{-1}{3} + 4 - 12 + c$$
$$c = \frac{1}{3} \qquad \checkmark$$

This study Rerthw Modern School 000846012161 from CourseHero.com on 07-10-2022 12:06:51 GMT -05:00

Page 8 of 9

: 
$$g(x) = \frac{-x^3}{3} + 4x^2 - 12x + \frac{1}{3}$$